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We employ effective interaction potentials to study the equilibrium structure and phase behavior of highly
asymmetric mixtures of star polymers. We consider in particular the influence of the addition of a component
with a small number of arms and a small size on a concentrated solution of large stars with a high functionality.
By employing liquid integral equation theories we examine the evolution of the correlation functions of the big
stars upon addition of the small ones, finding a loss of structure that can be attributed to a weakening of the
repulsions between the large stars due to the presence of the small ones. We analyze this phenomenon by
means of a generalized depletion mechanism which is supported by computer simulations. By applying ther-
modynamic perturbation theory we draw the phase diagram of the asymmetric mixture, finding that the
addition of small stars melts the crystal formed by the big ones. A systematic comparison between the two- and
effective one-component descriptions of the mixture that corroborates the reliability of the generalized deple-
tion picture is also carried out.
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I. INTRODUCTION

Mixtures whose constituent particles show a high asym-
metry in sizes are quite common in soft matter physics. As a
matter of fact, all soft-matter systems are at least two-
component mixtures, as they are typically suspensions or dis-
persions of mesoscopically-sized colloidal particles in a mi-
croscopic solvent. For many practical purposes, though, it
suffices to model the solvent as a continuous medium and
then an effective, one-component description of the sus-
pended colloidal particles is sufficient. The phenomenology
is much richer when more than one species of colloids is
dispersed in the solvent and also there the asymmetry in the
sizes of the two kinds of colloidal particles can be much
higher than the one encountered in atomic or molecular flu-
ids. In the recent past, a great deal of attention has been paid
to the investigation of model colloid-polymer mixtures, in
which the two species are hard colloidal spheres and soft,
flexible polymer chains[1]. The bulk of the theoretical
analysis of such systems is carried out within the framework
of the Asakura-Oosawa(AO) model [2–4], in which the
polymers are modeled as ideal, interpenetrating spheres that
experience a hard repulsion towards the colloids. Another
popular system that has attracted a lot of attention recently
are binary hard-sphere mixtures of various size ratios[5–9].
In both of those cases, attention is usually focussed on the
influence of the smaller component on the structural and
phase behavior of the larger one[10]. Demixing phase tran-
sitions and their competition to the crystallization transition
of the large hard spheres have been an issue of intensive
investigations in the past[11–18] with current research steer-
ing in the direction of the study of interfacial and wetting
properties of such mixtures[19–26], as well as the influence
of the additives on the vitrification transition of the hard
spheres[27–33].

A convenient concept that has helped shed light into the
phenomenology of such asymmetric mixtures is that of the
effective, depletion interactionbetween the hard spheres,
which is mediated by the smaller component[34,35]. In the

case of the AO mixture, the depletion interaction is purely
attractive and has the range of the size of the added polymer.
For binary hard-sphere mixtures, the effective depletion po-
tential displays oscillatory behavior due to correlation effects
[36,37]. Interpolating between the two extremes of ideal and
hard additives are star polymers of varying functionality,
whose depleting effects on hard spheres have been investi-
gated both theoretically[38,39] and experimentally[40].

The notion of depletion is almost exclusively invoked
whenever the large particles are hard colloids. Nevertheless,
it can be expanded in its interpretation to account for the
modification of the properties of the large particles in the
presence of smaller ones also for arbitrary kinds of interac-
tions between the constituent particles. There is relatively
little done in this direction, however, with the exception of
the derivation of effective potentials in Yukawa mixtures
[41] and in mixtures of star polymers and linear chains[42].
In the last case, it has been shown that the depletion mecha-
nism of the chains on the stars can account for the experi-
mentally observed melting of the star-polymer gel upon ad-
dition of linear polymer. In this paper, we turn our attention
to two-component mixtures in which all particle species in-
teract by means of soft potentials and, in particular, to mix-
tures of two kinds of star polymers: large ones with a high
number of arms and small ones will a low arm number. All
species interact via logarithmic-Yukawa pair potentials. We
find that in this case the depletion mechanism of the small
stars on the big ones has the effect of reducing the repulsive
potential between the latter and thus it brings about a melting
of the colloidal crystal formed by the large stars. Concomi-
tant to this effect is a partial loss of correlations between the
centers of the big stars, manifested in a drastic lowering of
the peak height of their partial structure factor. Upon addi-
tion of a sufficiently large quantity of depleting agents, even
an effectiveattraction between the large stars shows up, re-
sulting in a demixing spinodal between the two species.

The rest of the paper is organized as follows: In Sec. II we
present the pair potentials and the full, two-component de-
scription of the mixture, examining the effects of the deplet-
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ants on the structural correlations of the big stars. In Sec. III,
we formally trace out the small stars and examine the result-
ing effective, one-component interactions between the big
ones. This effective potential is employed, in turn, in order to
draw the phase diagram of the system in Sec. IV, where
thermodynamic perturbation theory is used for the calcula-
tion of the Helmholtz free energies of the fluid and solid
phases. In Sec. V we carry out a comparison between the
one- and full two-component descriptions of the mixture and
demonstrate the validity of the former, whereas in Sec. VI
we summarize and draw our conclusions.

II. TWO-COMPONENT DESCRIPTION

We consider binary mixtures of star-polymers which dif-
fer in terms of their sizes and arm numbers(functionalities).
The system consists ofN1 stars of corona diameters1 and
functionality f1 andN2 stars, characterized bys2 and f2, in a
volume V. We first calculate the properties of the binary
fluid. To obtain information about the pair correlations be-
tween the constituent particles, we describe the system using
the full two-component picture for the mixture of the two
different star-polymer species. The structural quantities we
calculate are used as input for the mapping onto an effective
one-component system in Sec. III. We define the size ratio of
the different species asq=s2/s1,1. Let ri =Ni /Vsi =1,2d
be the partial number densities of the two species.

We start from the effective pair potentials between the
mesoscopic particles, having traced out the monomer and
solvent degrees of freedom. The effective interaction be-
tween the star-polymers diverges logarithmically with the
center-to-center distancer asr →0, as derived by Witten and
Pincus [43]. A full expression for identical star-polymers,
which is valid for all star separations, has been derived and
verified by neutron scattering and monomer resolved mo-
lecular simulation[44,45]. The pair potential is given by an
ultrasoft interaction which shows logarithmic behavior for
small distances and an exponential Yukawa-type decay at
large star-star separation[44,46].

In the case of mixtures we need an expression for the
effective interaction between star polymers in an athermal
solvent that differ in their sizess1,s2 [70] and functional-
ities f1, f2, as a function of their center-to-center separationr.
In this work we use the effective pair potential which was
put forward by means of field-theoretical arguments and con-
firmed by molecular dynamics computer simulations in Ref.
[47], namely

bVij = Qi j5− lnS r

si j
D +

1

1 + si jki j
for r ø si j ,

1

1 + si jki j
Ssi j

r
Dexpssi jki j − rki jd else, 6

s1d

wheresi j =ssi +s jd /2 ,1 /ki j =si /Îf i +s j /Îf j and

Qi j =
5

36

1
Î2 − 1

fsf i + f jd3/2 − sf i
3/2 + f j

3/2dg. s2d

Moreover,b=skBTd−1 is the inverse temperature, withkB be-
ing Boltzmann’s constant. Since all three interactions are
purely entropic, thebVijsrd are independent of the tempera-
ture. Fori = j the potential reduces to the interaction of iden-
tical star polymers which was introduced in[44]. In what
follows, we fix the functionality of the large stars tof1
=263 in order to make contact with recently performed ex-
periments[42] in which smaller polymeric entities were used
as additives in gelated solutions of the large stars in order to
examine their overall influence on the rheology of the mix-
ture. This functionality is large enough for the star polymers
to crystallize into a fcc-structure roughly at their overlap
concentration[46]. For the small stars, we considered func-
tionalities f2=16 and 32 and size ratiosq in the range be-
tween 0.1 and 0.3.

The pair structure of the mixture can now be calculated
using the Ornstein-Zernike(OZ) equations for binary mix-
tures together with the two-component Rogers-Young(RY)
closure. The pair correlations of the system are described by
three independent total correlation functionshijsrd , i ø j
=1,2, since the symmetry with respect to the exchange of
indices dictateshijsrd=hjisrd for i Þ j . In addition, we have
the same number of direct correlation functionscijsrd. The

Fourier transforms of these quantities are denoted byh̃ijskd
and c̃i jskd, respectively.

For multicomponent mixtures, the OZ relation takes the
form [34,48]

H̃skd = C̃skd + C̃skd ·D · H̃skd, s3d

whereH̃skd and C̃skd are symmetricn3n matrices with

fH̃skdgi j = h̃ijskd and fC̃skdgi j = c̃i jskd. s4d

D is a diagonaln3n matrix with

fDgi j = ridi j . s5d

From Eq.(3) we obtain three independent equations for

the six unknown functionsh̃ijskd andc̃i jskd , i , j =1,2. Inorder
to obtain a solvable system, we need three additionalclosure
equationsbetween these functions. The Rogers-Young clo-
sure for multicomponent mixtures reads as[34]

gijsrd = expf− bVijsrdgF1 +
expfgi jsrdf ijsrdg − 1

f ijsrd G , s6d

wheregijsrd=hijsrd+1,gi jsrd=hijsrd−cijsrd and Vijsrd is the
pair interaction between particles of speciesi and j . The
“mixing function” f ijsrd is defined as

f ijsrd = 1 − exps− ai j rd. s7d

Usually, the same self-consistency parametera=ai j is used
for all components of the mixture. This allows us to fulfill
one thermodynamic consistency requirement, namely the
equality between the “virial” and “fluctuation” total com-
pressibilities of the mixture. Multi-parameter versions have
also been proposed[6], invoking thermodynamic consistency

MAYER, LIKOS, AND LÖWEN PHYSICAL REVIEW E 70, 041402(2004)

041402-2



for the partial compressibilities of each species. Fora→0
Eq. (6) reduces to the Percus-Yevick(PY) and fora→` to
the hypernetted chain(HNC) multicomponent closures.
When dealing with star polymers, which feature a soft repul-
sion of relatively short range, neither the PY nor the HNC
closure are adequate to capture the details of the correlation
functions with high accuracy, therefore employing the full
RY closure is essential[49].

In our work we solve the OZ equation with the RY-
closure[Eqs. (3)–(7)] for the two-component mixture. The
effective interactions between the star polymers are given by
Eq. (1). The thermodynamic consistency of the RY closure
was obtained by using a single parametera. The structure of
the binary mixture can be described either by the partial ra-
dial distribution functionsgijsrd=hijsrd+1 in real space or by
the three partial static structure factorsSijskd=di j

+Îrir jh̃i jskd in wave number space. The structure factors are
relevant in comparing with experiments, because they can be
measured via scattering techniques.

In Fig. 1(a) we show results for the radial distribution
function g11srd between the large stars in a dilute solution,
and its evolution upon increasing the concentration of small
additives with f2=32 andq=0.1. Although for very small
concentrations of smaller stars the functiong11srd has a rela-
tively structureless shape, it rapidly develops a pronounced
peak whenr2 is further increased. This is a first indication of
clustering of big stars, which has its physical origin in some
effective attraction induced by the small component. One
physically expects that when this attraction becomes suffi-
ciently strong, a demixing transition between the two species
will take place. This hypothesis is corroborated by the evo-
lution of the corresponding structure factorS11skd, shown in
Fig. 1(b). A fluid-fluid demixing binodal is indicated by the
divergence of all partial structure factors in the long-
wavelength limitk→0. As can be seen in Fig. 1(b), a growth
of thek→0 limit occurs upon increasingr2. The existence of
a demixing spinodal will be confirmed in Sec. IV where we
draw the phase diagram of the mixture.

We now examine the effect of the additives at the comple-
mentary regime of high concentration of large stars, and in

particular slightly above their overlap concentration, in
which the latter are in a thermodynamically stable crystalline
state [46] or in a dynamically arrested gel state[50]. We
derive the partial structure factorS11skd of the (metastable)
fluid in the absence of small stars and monitor its evolution
asr2 is increased. Representative results are shown in Fig. 2.
In Fig. 2(a), already a loss of correlations in real space can be
discerned, as witnessed by the broadening and lowering of
the coordination peaks ing11srd. Moreover, the large stars
approach closer to each other upon an increase ofr2, an
effect that can be interpreted as a weakening of the strength
of their mutual repulsion. As can be seen in Fig. 2(b), the
principle peak height of the structure factor of species 1di-
minishesas the density of the smaller component is in-
creased. The Hansen-Verlet criterion[51] states that a fluid
solidifies when the maximum of the structure factor exceeds
the threshold valueSthskmaxd=2.85. Therefore, the diminish-
ing of structure in the system is a first indication for the
melting of the crystal of big star polymers by addition of the
smaller species. In Fig. 2(b) it can be seen that the first peak
of the structure factor is bigger than 3 forr2s2

3=0. Already
small densities of the smaller component lead to a drastic
decline of the peak height, a finding that is in line with recent
experimental and theoretical results on mixtures of star poly-
mers withlinear chains[42].

III. EFFECTIVE ONE-COMPONENT DESCRIPTION

We now wish to put the assumptions regarding the influ-
ence of the additives on the effective interaction of the big
stars into a concrete test, by calculating an effective potential
Veffsrd between the latter in the presence of the former. To
this end, we carry out the mapping of the two-component
system onto an effective one-component description, in
which the degrees of freedom of the smaller star polymers
have been traced out. The interactions cause spatial correla-
tions of the density of small stars in the vicinity of two big
ones, influencing thereby the shape of the resulting general-
ized depletion interaction. There are different methods to ob-
tain these effective interactions. All of them omit many-body

FIG. 1. The partial(a) radial distribution functions and(b) static structure factors for species 1(big stars) in a mixture with small ones.
The density of species 1 isr1s1

3=0.05. The structure has been calculated using the two component OZ equations with the RY closure. The
plotted lines are for different densitiesr2, as indicated in the legend. In this case,q=0.1 andf2=32. The partial structure factor grows for
k→0 with increasingr2, as we approach the demixing spinodal line of the system.
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forces and reduce the interaction to an additive pair potential,
we will confirm however that many-body effects only play a
minor role.

Instead of the so-called “system representation,” in which
the two densitiesr1 andr2 in the mixture are given, we now
switch into the more convenient “reservoir representation”r1
andr2

r . Since the effective interaction between the large stars
depends rather on the chemical potentialm2 of the small ones
rather than on their densityr2, this description is more con-
venient [9]. The reservoir is a system consisting of pure
small stars and their density there,r2

r , is determined by the
requirement that the partial chemical potentialsm2 in the real
system andm2

r in the reservoir are equal. Clearly, due to the
finite value of the densityr1 in the system, it must holdr2
Þr2

r . The mapping between the two densities, depending
parametrically on the big star densityr1, will be carried out
in Sec. V.

A. Simulations

The most accurate way to obtain the effective interactions
between the big star polymers is a computer simulation of
the mixture[54–56]. We place two big stars of species 1 at
fixed positionsR1 andR2 along the diagonal of the simula-
tion cube, so that their common center coincides with the
center of the cube. They are surrounded by the smaller spe-
cies that move according to the forces dictated by the effec-
tive interactions of Eq.(1). Since we have only two big star
polymers in our simulation box, the density isr1→0. There-
fore the simulation provides directly the sought-for effective
force as a function of the reservoir densityr2

r .
We use standardNVT Monte Carlo simulation with peri-

odic boundary conditions and minimum image convention.
The length of the cubic simulation box isL=5s1, so that the
number of small stars in the simulation results which are
shown in Fig. 3 is between 125 and 1250. For each particle
up to 5 million Monte Carlo steps are calculated, where the
maximum displacement of the particles is chosen in such a
way that half the steps will be accept. The force is then
measured after every 1000 simulation steps. Due to the pres-
ence of the second big star, the density distribution around
each star is not spherically symmetric. This leads to an av-

erage nonvanishing force between them, which is mediated
by the small star polymers and parallel to the vectorR12
=R2−R1. Due to the symmetry of the system, the compo-
nents perpendicular toR12 have to vanish. The forceF1 act-
ing on the particle atR1 can then be calculated by averaging
over the simulation results, namely

F1sR12d =K− o
j=1

N2

¹R1
V12suR1 − r judL

R12

, s8d

where r j are the star-polymer positions of species 2 and
k¯lR12

denotes the statistical average, taken under the con-
straint of constantR12. Clearly, the effective force satisfies
the relationF2sR12d=−F1sR12d. We further define thedeple-
tion force FdepsR12d as the difference betweenF2sR12d and
the direct forceFdirsR12d between the two stars due to their
direct interaction potentialV11sR12d. The magnitude of the
depletion forceFdepsR12d is then given by

FdepsR12d =
R12

R12
·FdepsR12d. s9d

Accordingly, the total effective interaction between the big
star polymers in a sea of the smaller species is the sum of
their interaction potentialV11srd and the depletion potential
Vdepsrd:

Veffsrd = V11srd + Vdepsrd. s10d

A large number of long simulation runs is required to to
obtain accurate depletion forces with good statistics, which
renders this approach inefficient if ones needs to calculate
Veffsrd for arbitrary values ofq, f2 andr2

r . Thus, we resorted
to approximative theoretical methods to calculate the effec-
tive interactions and used the simulation results at selected
parameter combinations in order to put the theoretical ap-
proximations into test. The two theoretical approaches in-
voked in this work are the inversion of the Ornstein-Zernike
equation and the superposition approximation, which are
presented below.

FIG. 2. Same as Fig. 1 but now for big star densityr1s1
3=0.3. By increasing the density of the smaller component, the structure of the

fluid diminishes.
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B. Inversion of the Ornstein-Zernike equation

The effective potential can be obtained by inversion of the
two-component OZ equation results in the limit of low den-
sity of big stars[38,52,53]. It can be shown from diagram-
matic expansions in the theory of liquids[57] that the radial
distribution functiongsrd of any fluid whose constituent par-
ticles interact via the pair potentialVsrd, reduces to the Bolt-
zmann factorgsrd=expf−bVsrdg in the low-density limit.
The effective interaction between the big stars depends on
the reservoir densityr2

r of the smaller component. The inter-
action can be obtained by solving the full two-component
OZ equations with the RY closure for different small-
component densitiesr2 in the limit r1→0; due to the latter
limit, it then also holdsr2=r2

r . The radial distribution func-
tion g11srd can then be inverted to yield the effective poten-
tial as

bVeffsrd = − lim
r1→0

lnfg11sr ;r1,r2
r dg. s11d

Thereafter, the depletion forceFdepsrd can be calculated as
Fdepsrd=−]fVeffsrd−V11srdg /]r and compared then to the
simulation results of the preceding subsection. Selected com-
parisons are shown in Fig. 3, where it can be seen that the
inversion of the OZ relation yields very reliable results. We
emphasize here that the approximate character of the OZ-
inversion technique lies exclusively in the approximations
involved in solving the two-component integral equation
theories, i.e., in the Rogers-Young(or any other chosen) clo-

sure relation. Otherwise, the method is based on the exact
statement that the radial distribution function of a one-
component system at low densities is equal to the Boltzmann
factor of the associated pair potential and hence the agree-
ment of the inversion method with the simulation results
comes as no surprise. It rather corroborates the fact that the
two-component RY closure is very accurate whenever one
deals with soft, repulsive interactions, a result already seen in
the case of mixtures between hard spheres and star polymers
[39].

C. Superposition approximation

Another possibility to derive the effective interaction is
the superposition approximation(SA) [58]. If the density
distribution r2sr ;R1,R2d of the small stars around two big
stars held fixed at positionsR1 and R2 is known, then the
depletion force in the low-density limit can be calculated by
a simple integration. The densityr2sr ;R1,R2d is propor-
tional to three-body distribution functiong112sR1,R2,r d,
which expresses the probability density of finding a particle
of species 2 at positionr , given that two particles of species
one are fixed at positionsR1 and R2. This function is in
general unknown; a usual procedure is to approximate it by
the product of pair distribution functions[58].

We consider two big stars at the positionsR1 andR2 and
choose, without loss of generality,R1=0. Let the distance
between the particles beR12. The surrounding smaller star

FIG. 3. Comparison of Monte Carlo simulation(MC), inversion of Ornstein-Zernike equation(OZ), and superposition approximation
(SA) results for the depletion forces between the big stars.(a) Results forq=0.3,f2=32, andr2

r s2
3=0.027;(b) q and f2 same as in(a) but

r2
r s2

3=0.081;(c) for q=0.2,f2=32, andr2
r s2

3=0.08.
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polymers have the densityr2sr ;R1,R2d. By taking the aver-
age for fixedR12 we obtain the depletion force as

FdepsR12d = − 2pE
0

`

r2dV12srd
dr

drE
−1

1

r2sr ;R1,R2dvdv,

s12d

wherev=cosu.
Sincer2sr ;R1,R2d is in general not known, at this point

the exact density distribution has to be approximated. The
density distribution around two big stars is replaced by the
product of the density distributions around two isolated star
polymers at the positionsR1 and R2, respectively(see Fig.
4). The SA then reads as

r2sr ;R1,R2d < r2
r g12sur − R1udg12suR2 − r ud, s13d

wherer2
r is the reservoir density, again identical to the sys-

tem density for the situation at hand, since only two big stars
are considered in the thermodynamic limit and thusr1=0.
The functionsg12suRi −r ud are the radial distribution func-
tions of small star polymers surrounding a single large one.
Therefore, they can be obtained in ther1→0 limit of the
two-component OZ equations. Using simple geometrical
considerations, we obtainur −R1u=ÎR12

2 +r2−R12rv. Finally
we obtain for the depletion force in the SA the expression

FdepsR12d = − 2pr2
rE

0

`

r2dV12srd
dr

g12srddr

3 E
−1

1

g12sÎR12
2 + r2 − R12rvdvdv. s14d

The results we obtain by this method are compared to
Monte Carlo and to those derived from inversion of the
Ornstein-Zernike equation in Fig. 3. The results are very
similar to the ones we obtain by inverting the OZ equation
and both approximations yields reasonable agreement with
the simulation data. Therefore, it is possible to choose the
results of either approximation for calculating the phase dia-
grams and we expect that only minor quantitative differences
will be seen by employing the one or the other theoretical
approach.

D. Effective interactions

We have chosen to employ the effective interactions that
result from the inversion of the OZ equation since the latter
is based on an exact statement, whereas the SA has an ap-
proximate nature. Representative results are shown in Fig. 5.
For the lowest size ratio,q=0.1, we see that irrespective of
the functionality of the depletants(f2=16 or 32), the follow-
ing scenario materializes: asr2

r increases, first a weakening
of the repulsions takes place, followed by the development
of an attraction between the stars at sufficiently high reser-
voir densities; see Figs. 5(a) and 5(b). These findings provide
a possible physical realization of the recently-proposed
model ultrasoft repulsion potentials that are accompanied by
an attractive part[59]. This attraction is more pronounced for
f2=32 than for f2=16, if one compares two systems with
equal densityr2

r s2
3. This result is not surprising, since the

f2=32-stars exert a higher osmotic pressure on the large ones
than thef2=16-stars and can therefore reduce the direct re-
pulsions and induce attractions more efficiently.

Novel features in the effective potential appear for higher
size ratios,q=0.2 and q=0.3. As can be seen in Figs.
5(c)–5(f), an oscillatory structure appears in the effective po-
tential, which is akin to that seen for hard-sphere mixtures of
two different sizes. Contrary to this case, however, a deep
attraction between the big stars does not develop and, there-
fore, it seems that a demixing transition between the two
species does not exist when the sizes of the two stars become
more and more similar. In all cases, however, the range of
the repulsion decreases due to the depletion effect, i.e., the
big star polymers appear, in the presence of the small ones,
to be softer than they are in a pure solvent. Another possible
interpretation, to be elaborated on in what follows, is that the
big stars appear to be “smaller”, i.e., they acquire a reduced
effective hard sphere packing fraction as a result of the de-
pletants. Since the star polymers then need less space, they
become more mobile so the solid can melt. This property
will be discussed in more detail in Sec. IV B.

IV. PHASE DIAGRAMS

A. Hard sphere mapping

In order to trace out the phase diagram of the mixture in
the sr1,r2

r d representation, we first perform a mapping of the
effective one-component interactionVeffsrd between the big
stars onto an effective hard-sphere system of diameters.
Clearly, the latter depends on the reservoir densityr2

r as well
as on the system parametersq and f2. For the purposes of
performing the mapping in a physically meaningful way, we
distinguish between two cases.

First, we consider the case in whichVeffsrd is either free of
attractive parts or positive definite or, at most, it contains
negative parts not exceeding a small fraction ofkBT in mag-
nitude. In this case, it is physically meaningful to identifys
with the Barker-Henderson hard sphere diameter of thefull
effective interactionVeffsrd ,d, defined as[60]

d =E
0

`

h1 − expf− bVeffsrdgjdr. s15d

Most of the curves shown in Fig. 5 fall into this category. An
important exception are the curves pertaining tor2

r s2
3=0.1 in

FIG. 4. A sketch of two big stars at a distanceR12 with
r2sr ;R1,R2d denoting the density of the smaller stars atr . The
density distribution depends on the positions of the two big star
polymers.
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Fig. 5(a) and tor2
r s2

3=0.05 in Fig. 5(b). For these combina-
tions, and also for all others at even higher reservoir densi-
ties, a deep negative minimum appears inVeffsrd and appli-
cation of Eq.(15) to such cases would lead to unphysically
small and even negative effective hard sphere diameters. For
such combinations, it is physically appealing to separate the
effective potentialVeffsrd into a purely repulsive partV0srd
and a perturbation partVpertsrd, by truncating and shifting
upwards the full interaction at the deepest minimum[60]. In
this second case, it is pertinent to define another effective
hard sphere diameter,d0, that is associated withV0srd only
and is calculated again from the Barker-Henderson recipe,
namely

d0 =E
0

`

h1 − expf− bV0srdgjdr. s16d

In attempting to choose and match between the two pos-
sible hard sphere diameters,d andd0, we are confronted with
a technical difficulty. The evolution of the potentialVeffsrd
with r2

r is continuous and the appearance of negative minima
is in general accompanied by a soft repulsive barrier after the
minimum. The effective hard sphere diameter, on the other
hand, has to be a continuous function ofr2

r , so as to avoid
unphysical jumps of the phase boundaries in the phase dia-
gram. In Fig. 6 we show a typical result for the dependence
of d and d0 on r2

r . For low values ofr2
r , whereVeffsrd is

FIG. 5. The effective potentialVeffsrd between two big star polymers in the presence of a sea of small ones. The various combinations
of parameters regarding the density, functionality and size of the additives are shown in the legends. Notice the development of a strong
attractive part in the interaction for the caseq=0.1.
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purely repulsive,d is a meaningful measure of the effective
hard-sphere diameter. On the other hand, at high values of
r2

r , where a deep attraction between the big stars effectively
sets in, it isd0 that most realistically captures the physics of
the repulsions. The two curves cross at some point and, in
order to guarantee both the continuity ofs as a function of
r2

r and its correct asymptotic behavior for small and large
values ofr2

r , we choose

s = maxhd,d0j. s17d

It is then clear from the discussion above that for the pertur-
bation part,Vpertsrd, of the interaction, it holds

Vpertsrd = 0 if d . d0. s18d

The phase diagrams can now be calculated using standard
first-order perturbation theory[57] and taking Eqs.(17) and
(18) into account. We do not take higher orders into account
because we are mainly interested in the qualitative behavior
of the freezing line for small densitiesr2

r . Denoting byF0 the
Helmholtz free energy of the reference hard sphere system
(effective hard sphere diameters), the total Helmholtz free
energyF of the one-component system consisting ofN1 big
star polymers is approximated by

bF

N1
=

bF0

N1
+

1

2
br1E g0srdVpertsrdd3r . s19d

In Eq. (19) above,g0srd denotes the radial distribution func-
tion of the reference hard-sphere system in the fluid phase
and its angle-averaged counterpart in the solid phase, as de-
fined in Ref.[62].

We note here that more accurate methods for the treat-
ment of potentials with a soft core have also been proposed
[61], but are not used here since we are only interested in the
basic topology of the phase diagrams. For the free energy of
the reference hard sphere system we used the equations of
state of Carnahan-Starling[63] and Hall [64] for the fluid
and solid phases, respectively. For the calculation of pair
distribution functions we use the expressions of Henderson

and Grundke[65] for the fluid and of Kincaid and Weis[62]
for the fcc solid. We only considered the fcc solid because
this crystal structure appears at the fluid-solid transition in
one component star-polymer solutions with an arm number
f1=263 [46].

B. Results

In Fig. 7 we show the resulting phase diagrams for size
ratios q=0.1 andq=0.2 and functionalities of the smaller
speciesf2=16 andf2=32, as obtained by the procedure de-
scribed in the preceding subsection. The kinks forq=0.1 at
about r1s1

3=0.8 and r2s2
3=0.1 and r1s1

3=0.6 and r2s2
3

=0.05, respectively, are an artifact of the choice(17) and are
associated with the sudden appearance of theVpertsrd term in
Eq. (19), once we cross over from the cased.d0 to the case
d,d0 (cf. also Fig. 6). Since we are primarily interested in
the behavior for small densitiesr2

r and the influence of the
additives on crystallization, on the one hand, and on the pos-
sible existenceof a spinodal line, on the other, a more so-
phisticated approach to the problem is at this stage not nec-
essary. The liquid-solid coexistence region obtained by this
approach is rather wide, due to the mapping on the effective
hard-sphere system. Accurate calculations of the phase dia-
gram of star polymers reveal that the coexistence region is
much more narrow[46], yet the shape and evolution of the
freezing lines as a function ofr2

r are not influenced by the
width of the density gap between the fluid and the solid
phases. Finally, we note that we have shifted the freezing line
to higher densities by an amountDr1s1

3=0.06, in order to
obtain the same density values for the crystallization as in
the accurately known one component case[46].

For size ratioq=0.1, the effective potentialVeffsrd devel-
ops a strong attraction. This leads to a broadening of the
coexistence area between the solid and fluid phase and even-
tually to a demixing binodal. This binodal is found, however,
to be metastable with respect to the crystallization. The sharp
kinks that show up in Figs. 7(a) and 7(b) are artifacts of the
way in which the effective hard sphere diameters was de-
termined and, in particular, of the fact that the attractive per-
turbation partVpertsrd of the effective potential is absent in
the treatment for small reservoir densities below the kink and
present above it. In reality, we expect the phase coexistence
lines to “turn around” smoothly, i.e., without the aforemen-
tioned artificial kink. However, the topology of the phase
diagram and in particular the positive slope of the freezing
lines and the subsequent broadening of the coexistence re-
gion into a “gas-crystal” phase separation is not expected to
be affected by these approximations. For larger values ofq, a
strong attraction does not emerge, so there is no fluid-fluid
demixing. From Fig. 7 it can be seen that less stars withf2
=32 than with f2=16 are needed to achieve similar effect.
This is in agreement with the properties of star-polymer–
colloid mixtures which were investigated in[39]. The meta-
stable binodal is closer to the stable region of the phase dia-
gram for the smaller functionality of the depletant. The same
trends were also observed in star-polymer–colloid mixtures
[39], where stable binodals were only found for small deplet-
ant functionalities such asf2=2 and f2=6. For the star-

FIG. 6. The two possible effective hard sphere diametersd and
d0 pertaining to the effective interactionVeffsrd between big stars,
against the reservoir densityr2

r . The parameter combination here is
f2=32 andq=0.1. As explained in the text,d is calculated using the
full effective interaction andd0 only for the reference part.
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polymer mixtures we consider here, the existence of a bin-
odal is less likely than in star-polymer–colloid mixtures,
because for star polymers the depletion force has to over-
come the Yukawa-type repulsion between them before an
effective attraction sets in.

A striking effect is the melting of the crystal of the big
stars upon addition of the small component, as can be seen
from the positive slope of the freezing and melting lines in
Fig. 7. No effective attraction between the star polymers is
needed for this effect. As can be seen from Fig. 6, the effec-
tive hard sphere diameters of the system decreases with
increasing depletant density. Therefore, the effective packing
fraction hHS=sp /6dr1s3 for the big stars gets smaller with
increasingr2

r . Since this quantity determines the location of
the freezing transition, the latter shifts to higher values ofr1.
The melting is therefore caused by the apparent shrinkage of
the stars due to the depletion effects. The counterintuitive
behavior of melting of a crystal although the overall polymer
concentration is increased has its physical roots in thesoft
depletion mechanism and the associated reduction of the
range of the repulsive potential between the big stars.

In real experimental systems of star polymers, usually the
formation of a glass is observed instead of crystallization.
These glass transition lines are usually parallel to the freez-
ing lines of the phase diagram, a property explicitly con-
firmed for the glass line of one-component star polymer so-
lutions [50]. Therefore, we expect that the kinetic phase

diagram of the mixture will have a topology running parallel
to that of the equilibrium one that we traced in this study. We
predict, therefore, that addition of small stars will bring
about a melting of the colloidal glass(or gel) formed by the
large ones. This has been shown to be the case for mixtures

FIG. 7. Phase diagrams for star polymer mixtures for different parameter combinations. The big star functionality is fixed atf1=263. The
circles denote the phase boundaries as calculated by the hard-sphere mapping including the perturbation partVpertsrd and the lines are a guide
to the eye. It can be seen that we only find a fluid-fluid demixing forq=0.1. This binodal line is metastable with respect to the formation of
the fcc solid. The kink in the phase boundaries forq=0.1 is an artifact and is caused by the method used to split the effective pair potential
into reference and perturbation part. The symbolF stands for the fluid and the symbolS for the solid regions.

FIG. 8. Mapping between the system and reservoir densitiesr2

and r2
r of the small stars forf2=32 andq=0.1, and for various

different values of the big star densityr1.
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of star polymers with linear homopolymer chains[42].

V. COMPARISON BETWEEN ONE- AND TWO-
COMPONENT DESCRIPTIONS

A. Chemical potentials

By calculating the partial chemical potentials of the two-
component system, we now map the reservoir representation
sr1,r2

r d on the real physical systemsr1,r2d, so as to make
contact with experimental work, in whichr2

r has no direct
relevance. The densitiesr2

r andr2 are linked by the condition
that the chemical potential of the reservoirm2

r has to be the
same as the partial chemical potential in the systemm2.

The chemical potential in the reservoir of densityr2
r can

easily be calculated if the fluid structure is known. The
Helmholtz free energy density of the small stars in the res-
ervoir, F /V= fsr2

r d, can be split into an ideal and an excess
part:

fsr2
r d = f idsr2

r d + fexsr2
r d, s20d

where f idszd=r lnszt3d−z and t is an arbitrary length scale.
The second derivative of the excess part is connected to the
structure via the relation[66]

FIG. 9. Comparison of the fluid structure in the two- and effective one-component case. The densities are denoted in the diagrams. The
structure of the mixture was calculated using the two-component RY closure, in the one component the usual RY closure was used. All plots
are for q=0.1 and f2=32. In panels(a), (e), and (f) the solid and dashed lines fall on top of each other, so that the latter cannot be
distinguished from the former.
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fex9 sr2
r d =

1

r2
r Ssk = 0;r2

r d
−

1

r2
r , s21d

where Sskd is the structure factor of the small stars in the
reservoir(one-component system). The free energy can then
be calculated by two integrations, with the integration con-
stants determined by the conditionsfex8 s0d=0 and fexs0d=0.
The chemical potential of the reservoir is given by

m2
r = f8sr2

r d. s22d

In order two calculate the partial chemical potentialm2 in
the two-component system representation, we employ the so-
called concentration structure factor[67]

Sconskd = x1x2
2S11skd + x1

2x2S22skd − sx1x2d3/2S12skd, s23d

where xi =ri / sr1+r2d. Thermodynamic properties can then
be calculated by using the equation[5,67]

lim
k→0

Sconskd = F ]2gsx2,P,Td
] x2

2 G−1

, s24d

wheregsx2,P,Td=Gsx2,N,P,Td /N is the Gibbs free energy
per particle of the two-component mixture andP its total
pressure. Equation(24) can then be integrated as described in
Ref. [39] to yield the sought-for Gibbs free energy per par-
ticle gsx2,P,Td. Once the Gibbs free energy is known, the
partial chemical potentials can be calculated using the equa-
tions

g8sx2d = m2 − m1 s25d

and

gsx2d − x2g8sx2d = m1. s26d

Reverting from the pair of variablessx2,Pd back tosr1,r2d
for the mixture and using Eqs.(22), (25), and(26), the map-
ping sr1,r2

r d→ sr1,r2d can be carried out. Representative re-
sults are shown in Fig. 8. Clearly, the mapping depends para-
metrically on the big star densityr1 in the mixture. Forr1
=0 one recoversr2=r2

r . In all cases, we obtainr2,rs
r be-

cause all interactions are purely repulsive. The difference
between the reservoir and system densities grows with in-
creasingr1.

B. Structure

We now consider the spatial correlations between the big
stars in the fluid phase. We compare the correlation functions
calculated in the two-component description with those aris-
ing from the one-component description using the effective
interactions in the presence of the smaller species. The com-
parison has to be carried out for parameter combinations
such that the reservoir and system partial chemical potentials
of the smaller species are equal to one another. As the one-
component description reduces the effective interaction to
pair potentials, the comparison of the structural properties
allows to estimate the magnitude of many body effects on the
depletion.

In Fig. 9 we show the radial distribution functions and
static structure factors of the big stars calculated with both

different approaches. For the one-component case, the RY
closure can be used because for the densities we consider
here the effective interactions remain purely repulsive. The
cases we consider here are for small densitiesr2 but a wide
range of values ofr1. The two component description in-
cludes many-body forces between the big stars which are
caused by the smaller component. These effects are ne-
glected in the effective one-component description[9]. In
Fig. 9, one can see excellent agreement of the results ob-
tained by using these two different descriptions of the physi-
cal system. This additionally corroborates the validity of our
approximation of the effective interaction. It can also be con-
cluded from the plots that the three-body forces are indeed
much weaker than the pair interactions and can be safely
neglected[68,69].

VI. SUMMARY AND CONCLUSIONS

We have analyzed the structural and phase behavior of
highly asymmetric mixtures of star polymers, with the asym-
metry characterizing both their sizes and functionalities. The
most striking phenomenon predicted by our investigations is
the counterintuitivemeltingof the colloidal crystal of the big
stars upon addition of small ones. Though this finding ap-
pears paradoxical at first sight, since addition of smaller stars
increases the overall polymer concentration of the solution,
its physical explanation can be traced to the effects ofsoft
depletion.Whereas the depletants of hard spheres simply su-
perimpose an effective attraction on a hard potential, when
the big particles are themselves repulsive the depletion at-
traction is superimposed on a(soft) repulsion. In this way, a
repulsive potential of reduced strength and/or range results
and the effective, reduced repulsion is not any more suffi-
cient to maintain the stability of the crystal, which therefore
melts. When the depletant concentration becomes suffi-
ciently high, the attractive depletion force dominates over the
soft repulsion, leading to a(possibly metastable) demixing
transition between the two species.

In real experimental systems of star polymers with high
functionality, crystallization is hindered by the vitrification
(gelation) transition and the large stars become structurally
arrested in a glassy state above the overlap concentration.
The next step would be then to investigate the role and in-
fluence of smaller star additives on the glass transition of
larger stars, a problem of significant importance for the con-
trol of the rheological behavior of soft matter through addi-
tives. Work along these lines is currently under way and the
presentation of the results of this investigation will be the
subject of a future publication.
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