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Equilibrium properties of highly asymmetric star-polymer mixtures
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We employ effective interaction potentials to study the equilibrium structure and phase behavior of highly
asymmetric mixtures of star polymers. We consider in particular the influence of the addition of a component
with a small number of arms and a small size on a concentrated solution of large stars with a high functionality.
By employing liquid integral equation theories we examine the evolution of the correlation functions of the big
stars upon addition of the small ones, finding a loss of structure that can be attributed to a weakening of the
repulsions between the large stars due to the presence of the small ones. We analyze this phenomenon by
means of a generalized depletion mechanism which is supported by computer simulations. By applying ther-
modynamic perturbation theory we draw the phase diagram of the asymmetric mixture, finding that the
addition of small stars melts the crystal formed by the big ones. A systematic comparison between the two- and
effective one-component descriptions of the mixture that corroborates the reliability of the generalized deple-
tion picture is also carried out.
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I. INTRODUCTION case of the AO mixture, the depletion interaction is purely
Mixtures whose constituent particles show a high asym_attracnve and has the range of the size of the added polymer.

metry in sizes are quite common in soft matter physics. As & °" binary hard-sphere mixtures, the effective depletion po-
tential displays oscillatory behavior due to correlation effects

matter of fact, all soft-matter systems are at least two- lati h t ideal

component mixtures, as they are typically suspensions or di _36,dSﬂ.dIg_t¢rp0 ating betweein the twc; extre_mesfo idea I"J.md

persions of mesoscopically-sized colloidal particles in a mi-'ard additives are star polymers of varying functionality,
ivhose depleting effects on hard spheres have been investi-

croscopic solvent. For many practical purposes, though, X :
suffices to model the solvent as a continuous medium angatGd both'theoretlcaII{BS,Sq and exper|ment§1II)[4O].
The notion of depletion is almost exclusively invoked

then an effective, one-component description of the sus-

pended colloidal particles is sufficient. The phenomenolog))Nhenever the large particles are hard colloids. Nevertheless,

! X . .=t can be expanded in its interpretation to account for the
is much richer when more than one species of colloids i

: ) IS Shodification of the properties of the large particles in the
dispersed in the solvent and also there the asymmetry in t esence of smaller ones also for arbitrary kinds of interac-

sizes of the two kinds of colloidal particles can be muchjqng petween the constituent particles. There is relatively
higher than the one encountered in atomic or molecular flufiie done in this direction, however, with the exception of
ids. In the recent past, a great deal of attention has been paje derivation of effective potentials in Yukawa mixtures
to the investigation Of m0de| CO||0id-p0|ymer mixtures, in [41] and in mixtures of star po'ymers and linear Chajmg]
which the two species are hard colloidal spheres and soffn the last case, it has been shown that the depletion mecha-
flexible polymer chains[1]. The bulk of the theoretical nism of the chains on the stars can account for the experi-
analysis of such systems is carried out within the frameworknentally observed melting of the star-polymer gel upon ad-
of the Asakura-OosawgAO) model [2—-4], in which the dition of linear polymer. In this paper, we turn our attention
polymers are modeled as ideal, interpenetrating spheres thit two-component mixtures in which all particle species in-
experience a hard repulsion towards the colloids. Anotheteract by means of soft potentials and, in particular, to mix-
popular system that has attracted a lot of attention recentlyures of two kinds of star polymers: large ones with a high
are binary hard-sphere mixtures of various size rgtte<). number of arms and small ones will a low arm number. All
In both of those cases, attention is usually focussed on thgpecies interact via logarithmic-Yukawa pair potentials. We
influence of the smaller component on the structural andind that in this case the depletion mechanism of the small
phase behavior of the larger ofi)]. Demixing phase tran- stars on the big ones has the effect of reducing the repulsive
sitions and their competition to the crystallization transitionpotential between the latter and thus it brings about a melting
of the large hard spheres have been an issue of intensiva the colloidal crystal formed by the large stars. Concomi-
investigations in the pa$i1-18 with current research steer- tant to this effect is a partial loss of correlations between the
ing in the direction of the study of interfacial and wetting centers of the big stars, manifested in a drastic lowering of
properties of such mixturgd9-24, as well as the influence the peak height of their partial structure factor. Upon addi-
of the additives on the vitrification transition of the hard tion of a sufficiently large quantity of depleting agents, even
sphereq427-33. an effectiveattraction between the large stars shows up, re-
A convenient concept that has helped shed light into thesulting in a demixing spinodal between the two species.
phenomenology of such asymmetric mixtures is that of the The rest of the paper is organized as follows: In Sec. Il we
effective, depletion interactionbetween the hard spheres, present the pair potentials and the full, two-component de-
which is mediated by the smaller compon§d4,35. In the  scription of the mixture, examining the effects of the deplet-

1539-3755/2004/1@)/04140213)/$22.50 70041402-1 ©2004 The American Physical Society



MAYER, LIKOS, AND LOWEN PHYSICAL REVIEW E 70, 041402(2004

ants on the structural correlations of the big stars. In Sec. lll, 5 1 3 32 32
we formally trace out the small stars and examine the result- 0; = 3_6,5—_1[(fi + )T - (7 + )] (2)
ing effective, one-component interactions between the big v
ones. This effective potential is employed, in turn, in order toMoreover,3=(kgT) ! is the inverse temperature, wikg be-
draw the phase diagram of the system in Sec. IV, wheréng Boltzmann's constant. Since all three interactions are
thermodynamic perturbation theory is used for the calculapurely entropic, theV;;(r) are independent of the tempera-
tion of the Helmholtz free energies of the fluid and solidture. Fori=j the potential reduces to the interaction of iden-
phases. In Sec. V we carry out a comparison between thgcal star polymers which was introduced 44]. In what
one- and full two-component descriptions of the mixture andfollows, we fix the functionality of the large stars
demonstrate the validity of the former, whereas in Sec. VI=263 in order to make contact with recently performed ex-
we summarize and draw our conclusions. perimentg42] in which smaller polymeric entities were used
as additives in gelated solutions of the large stars in order to
examine their overall influence on the rheology of the mix-
Il. TWO-COMPONENT DESCRIPTION ture. This functionality is large enough for the star polymers
to crystallize into a fcc-structure roughly at their overlap
We consider binary mixtures of star-polymers which dif- concentratior{46]. For the small stars, we considered func-
fer in terms of their sizes and arm numbéienctionalitiey.  tionalities f,=16 and 32 and size ratiag in the range be-
The system consists di; stars of corona diameter; and  tween 0.1 and 0.3.
functionality f; andN, stars, characterized iy, andf,, in a The pair structure of the mixture can now be calculated
volume V. We first calculate the properties of the binary using the Ornstein-Zernik€0Z) equations for binary mix-
fluid. To obtain information about the pair correlations be-tures together with the two-component Rogers-Yo(RY)
tween the constituent particles, we describe the system usingosure. The pair correlations of the system are described by
the full two-component picture for the mixture of the two three independent total correlation functiotg(r),i<j
different star-polymer species. The structural quantities we=1,2, since the symmetry with respect to the exchange of
calculate are used as input for the mapping onto an effectivindices dictatesy;(r)=h;(r) for i #j. In addition, we have
one-component system in Sec. Ill. We define the size ratio olhe same number of direct correlation functiargr). The

the different species ag=o,/01<1. Let pi=Ni/V(i=1,2) o rier transforms of these quantities are denotealipy)
be the partial number densities of the two species. andt; (k), respectively
ij ’ .

We star't from. the effec.t|ve pair potentials between the For multicomponent mixtures, the OZ relation takes the
mesoscopic particles, having traced out the monomer a rm [34,48
solvent degrees of freedom. The effective interaction be- '
tween the star-polymers diverges logarithmically with the H(k) = C(k) + C(k) - D - H(K), (3)
center-to-center distanceasr — 0, as derived by Witten and _ _
Pincus[43]. A full expression for identical star-polymers, whereH (k) andC(k) are symmetricv X v matrices with
which is valid for all star separations, has been derived and ~ ~ ~ _
verified by neutron scattering and monomer resolved mo- [H(K)]; =hjk) and [C(K];=T;(K). (4)
lecular simulation/44,49. The pair potential is given by an p is 4 diagonaly X v matrix with
ultrasoft interaction which shows logarithmic behavior for
small distances and an exponential Yukawa-type decay at [Dlij = pi 8. 5
Iar?e ;sr:ar-star sefparattlc@n4,4q. g on for the FTOM EG-(3) we obtain three independent equations for
n (e case of miXiLres we need an expression for he six unknown functionk;; (k) andcj;(k),i,j=1,2. Inorder

effective interaction between star polymers in an atherma] btai vabl dth dditiotos
solvent that differ in their sizes, o, [70] and functional- t© OPtain a solvable system, we need three additiolvsure

ities f1, f,, as a function of their center-to-center separation equa'?onsbeltyveen these fu_nctlons. Tr(;e Rogers-Young clo-
In this work we use the effective pair potential which wasSUre for multicomponent mixtures reads[a€]

put forward by means of field-theoretical arguments and con- exd v (Nfi (] -1
firmed by molecular dynamics computer simulations in Ref. gij(r) = exp - BVi(N]} 1+ ) f»-(r”) (6
[47], namely i

where gj;(r)=h;;(r)+1,v;(r)=h;;(r)—c;;(r) and Vj(r) is the
pair interaction between particles of specieand j. The

( r ) 1 “mixing function” f;(r) is defined as

-In{—|+— forr < oy,

BV, =0, 1%' 1+ 0ijk; fi;(r) =1 - exp— a;r). (7)
—(ﬂl)exp(gij Kij — ki) else, Usually, the same self-consistency parametery; is used
1L+ajkj\ T for all components of the mixture. This allows us to fulfill

(1) one thermodynamic consistency requirement, namely the
equality between the “virial” and “fluctuation” total com-

_ _ pressibilities of the mixture. Multi-parameter versions have
whereaojj=(0i+0))/2,1/k;=0i/Vfj+o;/\f; and also been proposgé], invoking thermodynamic consistency
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FIG. 1. The partiala) radial distribution functions an¢b) static structure factors for speciegHig star$ in a mixture with small ones.
The density of species 1 }gaf:0.0S. The structure has been calculated using the two component OZ equations with the RY closure. The
plotted lines are for different densitigs, as indicated in the legend. In this cage,0.1 andf,=32. The partial structure factor grows for
k— 0 with increasingp,, as we approach the demixing spinodal line of the system.

for the partial compressibilities of each species. ker0 particular slightly above their overlap concentration, in
Eq. (6) reduces to the Percus-Yevi¢RY) and fora—o to  which the latter are in a thermodynamically stable crystalline
the hypernetted chaifHNC) multicomponent closures. state[46] or in a dynamically arrested gel stafg0]. We
When dealing with star polymers, which feature a soft repul-derive the partial structure fact®;;(k) of the (metastablg
sion of relatively short range, neither the PY nor the HNCfjyid in the absence of small stars and monitor its evolution
closure are adequate to capture the details of the correlatiaip, is increased. Representative results are shown in Fig. 2.
functions with high accuracy, therefore employing the full |n Fig. 2a), already a loss of correlations in real space can be
RY closure is essentig#9]. discerned, as witnessed by the broadening and lowering of
In our work we solve the OZ equation with the RY- the coordination peaks ig;,(r). Moreover, the large stars
closure[Egs. (3)«7)] for the two-component mixture. The approach closer to each other upon an increasg,0fn
effective interactions between the star polymers are given bffect that can be interpreted as a weakening of the strength
Eg. (1). The thermodynamic consistency of the RY closureof their mutual repulsion. As can be seen in Figh)2 the
was obtained by using a single parameteihe structure of  principle peak height of the structure factor of speciedi-1
the binary mixture can be described either by the partial raminishesas the density of the smaller component is in-
dial distribution functiongy;(r)=h;;(r) + 1 in real space or by  creased. The Hansen-Verlet criteriffl] states that a fluid
the three partial static structure factor§;(k)=6;  solidifies when the maximum of the structure factor exceeds
+\s’?pjﬁij(k) in wave number space. The structure factors aréhe threshold valu&y(kmae =2.85. Therefore, the diminish-
relevant in comparing with experiments, because they can b@g of structure in the system is a first indication for the
measured via scattering techniques. melting of the crystal of big star polymers by addition of the
In Fig. (@) we show results for the radial distribution smaller species. In Fig.(B) it can be seen that the first peak
function gy(r) between the large stars in a dilute solution, of the structure factor is bigger than 3 fpso3=0. Already
and its evolution upon increasing the concentration of smalfmall densities of the smaller component lead to a drastic
additives withf,=32 andq=0.1. Although for very small decline of the peak height, a finding that is in line with recent
concentrations of smaller stars the functigi(r) has a rela- experimental and theoretical results on mixtures of star poly-
tively structureless shape, it rapidly develops a pronouncefers withlinear chains[42].
peak wherp, is further increased. This is a first indication of
clustering of big stars, which has its physical origin in some
effective attraction induced by the small component. One
physically expects that when this attraction becomes suffi- We now wish to put the assumptions regarding the influ-
ciently strong, a demixing transition between the two speciegnce of the additives on the effective interaction of the big
will take place. This hypothesis is corroborated by the evostars into a concrete test, by calculating an effective potential
lution of the corresponding structure fac®n(k), shown in  Vgu(r) between the latter in the presence of the former. To
Fig. 1(b). A fluid-fluid demixing binodal is indicated by the this end, we carry out the mapping of the two-component
divergence of all partial structure factors in the long-system onto an effective one-component description, in
wavelength limitk— 0. As can be seen in Fig(ld), a growth  which the degrees of freedom of the smaller star polymers
of thek— 0 limit occurs upon increasing,. The existence of have been traced out. The interactions cause spatial correla-
a demixing spinodal will be confirmed in Sec. IV where we tions of the density of small stars in the vicinity of two big
draw the phase diagram of the mixture. ones, influencing thereby the shape of the resulting general-
We now examine the effect of the additives at the compleized depletion interaction. There are different methods to ob-
mentary regime of high concentration of large stars, and irain these effective interactions. All of them omit many-body

Ill. EFFECTIVE ONE-COMPONENT DESCRIPTION
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FIG. 2. Same as Fig. 1 but now for big star denmﬁzo.?’. By increasing the density of the smaller component, the structure of the
fluid diminishes.

forces and reduce the interaction to an additive pair potentiagrage nonvanishing force between them, which is mediated

we will confirm however that many-body effects only play a by the small star polymers and parallel to the ved®p

minor role. =R,-R;. Due to the symmetry of the system, the compo-
Instead of the so-called “system representation,” in whicments perpendicular tB;, have to vanish. The forcg; act-

the two densitiep, andp, in the mixture are given, we now ing on the particle aR, can then be calculated by averaging

switch into the more convenient “reservoir representatign” over the simulation results, namely

andpj. Since the effective interaction between the large stars

depends rather on the chemical potentigbf the small ones N
rather than on their density, this description is more con- Fi(Ry) =\ - > VR1V12(|R1 - rJ-|) , (8)
venient [9]. The reservoir is a system consisting of pure =1 Rip

small stars and their density theys, is determined by the
requirement that the partial chemical potentjajsin the real ~ wherer; are the star-polymer positions of species 2 and
system angu}, in the reservoir are equal. Clearly, due to the(---)R12 denotes the statistical average, taken under the con-
finite value of the density, in the system, it must hold,  straint of constanR,,. Clearly, the effective force satisfies
#p,. The mapping between the two densities, dependinghe relationF,(Ry,) =—-F1(Ry,). We further define theleple-
parametrically on the big star densjty, will be carried out  tion force Fy, 4Ry as the difference betweef,(R;,) and
in Sec. V. the direct forceF (R, between the two stars due to their
direct interaction potentiaV/;;(R;5). The magnitude of the
A. Simulations depletion forceF Ry, is then given by

The most accurate way to obtain the effective interactions
between the big star polymers is a computer simulation of
the mixture[54-56. We place two big stars of species 1 at
fixed positionsR; andR, along the diagonal of the simula-
tion cube, so that their common center coincides with theaccordingly, the total effective interaction between the big
center of the cube. They are surrounded by the smaller sp&tar polymers in a sea of the smaller species is the sum of

cies that move according to the forces dictated by the effectheir interaction potentiaV/;4(r) and the depletion potential
tive interactions of Eq(l). Since we have only two big star Veedr):

polymers in our simulation box, the densitydgs— 0. There-

R
FaedRu2) = R—ij FaedRao)- (9)

fore the simulation provides directly the sought-for effective V1) = Var (1) + Vot 10
force as a function of the reservoir density ei() = Vaal1) + V). (10
We use standartlVT Monte Carlo simulation with peri- A large number of long simulation runs is required to to

odic boundary conditions and minimum image conventionobtain accurate depletion forces with good statistics, which
The length of the cubic simulation box is=504, so that the renders this approach inefficient if ones needs to calculate
number of small stars in the simulation results which areVeg(r) for arbitrary values ofy, f, and p}. Thus, we resorted
shown in Fig. 3 is between 125 and 1250. For each particléo approximative theoretical methods to calculate the effec-
up to 5 million Monte Carlo steps are calculated, where thedive interactions and used the simulation results at selected
maximum displacement of the particles is chosen in such @arameter combinations in order to put the theoretical ap-
way that half the steps will be accept. The force is thenproximations into test. The two theoretical approaches in-
measured after every 1000 simulation steps. Due to the preseoked in this work are the inversion of the Ornstein-Zernike
ence of the second big star, the density distribution arounéquation and the superposition approximation, which are
each star is not spherically symmetric. This leads to an avpresented below.
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FIG. 3. Comparison of Monte Carlo simulatigMC), inversion of Ornstein-Zernike equati@®Z), and superposition approximation
(SA) results for the depletion forces between the big sta@sResults forq=0.3,f,=32, andp’Z(rg:O.OZ?;(b) g andf, same as ifa) but
p503=0.081;(c) for q=0.2,f,=32, andp,03=0.08.

B. Inversion of the Ornstein-Zernike equation sure relation. Otherwise, the method is based on the exact

The effective potential can be obtained by inversion of theStatement that the radial distribution function of a one-
two-component OZ equation results in the limit of low den- Component system at low d(_ansmes is equal to the Boltzmann
sity of big stars[38,52,53. It can be shown from diagram- factor of the associated pair potential and hence the agree-
matic expansions in the theory of liquifs7] that the radial ment of the inversion method with the simulation results
distribution functiong(r) of any fluid whose constituent par- COMes as no surprise. It rather corroborates the fact that the
ticles interact via the pair potenti®r), reduces to the Bolt- WO-component RY closure is very accurate whenever one
zmann factorg(r)=exg-AV(r)] in the low-density limit. deals with soft, repulsive interactions, a result already seen in
The effective interaction between the big stars depends off'€ case Of mixtures between hard spheres and star polymers

the reservoir density), of the smaller component. The inter- 1.
action can be obtained by solving the full two-component
OZ equations with the RY closure for different small-

o . L C. Superposition approximation
component densities, in the limit p; — 0; due to the latter

limit, it then also holdsp,=p5. The radial distribution func- Another possibility to derive the effective interaction is
tion gy4(r) can then be inverted to yield the effective poten-the Superposition approximatioiSA) [58]. If the density
tial as distribution p,(r ;R;,R,) of the small stars around two big
stars held fixed at positionR; and R, is known, then the
BVeslr) = —Jimom[gu(r:pbprz)]- (11)  depletion force in the low-density limit can be calculated by
—

a simple integration. The density,(r ;R;,R,) is propor-
Thereafter, the depletion fordey{r) can be calculated as tional to three-body distribution functiom;;(R1,R5,r),
Faed) =—d[Ver(r)—Va4(r)]/or and compared then to the which expresses the probability density of finding a particle
simulation results of the preceding subsection. Selected conof species 2 at position, given that two particles of species
parisons are shown in Fig. 3, where it can be seen that thene are fixed at positionR; and R,. This function is in
inversion of the OZ relation yields very reliable results. Wegeneral unknown; a usual procedure is to approximate it by
emphasize here that the approximate character of the OZhe product of pair distribution functior{§8].
inversion technique lies exclusively in the approximations We consider two big stars at the positidRg andR, and
involved in solving the two-component integral equationchoose, without loss of generalitR;=0. Let the distance
theories, i.e., in the Rogers-Youligr any other choserclo-  between the particles bR;,. The surrounding smaller star
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P (r;R, Ry D. Effective interactions

We have chosen to employ the effective interactions that
result from the inversion of the OZ equation since the latter
is based on an exact statement, whereas the SA has an ap-
proximate nature. Representative results are shown in Fig. 5.
For the lowest size ratiqg=0.1, we see that irrespective of
the functionality of the depletant$,=16 or 33, the follow-
ing scenario materializes: g increases, first a weakening
of the repulsions takes place, followed by the development
of an attraction between the stars at sufficiently high reser-
voir densities; see Figs(& and §b). These findings provide
. . . a possible physical realization of the recently-proposed

F.IG' 4. A SkeFCh of two b.'g stars at a distanég, with model ultrasoft repulsion potentials that are accompanied by
p2(1;Ry,R) denoting the density of the smaller starsratThe "o e parf59]. This attraction is more pronounced for
density distribution depends on the positions of the two big starf —32 than forf :i6 if one compares two svstems with
polymers. 2 e ' omp 0 syste

equal densityp,05. This result is not surprising, since the
f,=32-stars exert a higher osmotic pressure on the large ones
polymers have the densipp(r ;R1,Ry). By taking the aver-  than thef,=16-stars and can therefore reduce the direct re-
age for fixedR;, we obtain the depletion force as pulsions and induce attractions more efficiently.
= Vi) Novel features in the effective potential appear for higher
_ 2aVoll . size ratios,g=0.2 andg=0.3. As can be seen in Figs.
FaedRi2) == ZTFL T ar drf_l p2riRuRy)wdo, 5(c)-5(f), anqoscillatory gtructure appears in the effectivegpo—
tential, which is akin to that seen for hard-sphere mixtures of
(12 two different sizes. Contrary to this case, however, a deep
wherew=cosd attracpion between the big stars does not develop and, there-
. L - . . fore, it seems that a demixing transition between the two

Since py(r 'R%'RZ)_ IS In Qe”efa' not known, at_thls point species does not exist when the sizes of the two stars become
the exact density distribution has to be approximated. The,ore and more similar. In all cases, however, the range of
density distribution around two big stars is replaced by thgne repulsion decreases due to the depletion effect, i.e., the
product of the density distributions around two isolated Sta'big star polymers appear, in the presence of the small ones,
polymers at the positionR; andR,, respectively(see Fig. o pe softer than they are in a pure solvent. Another possible
4). The SA then reads as interpretation, to be elaborated on in what follows, is that the

. o big stars appear to be “smaller”, i.e., they acquire a reduced
pa(riRLR) = poguallr = RiDgualIRz =r), - (13) effective hard sphere packing fraction as a result of the de-
wherep}, is the reservoir density, again identical to the sys-Pletants. Since the star polymers then need less space, they
tem density for the situation at hand, since only two big star§€come more mobile so the solid can melt. This property
are considered in the thermodynamic limit and ths0. Wil be discussed in more detail in Sec. IV B.
The functionsg,,(|R;—r|) are the radial distribution func- IV. PHASE DIAGRAMS
tions of small star polymers surrounding a single large one. '
Therefore, they can be obtained in tpg—0 limit of the A. Hard sphere mapping
two-component OZ equations. Using simple geometrical |n order to trace out the phase diagram of the mixture in
considerations, we obtailn—Ry|=\R;,+r?~Ry. Finally  the(p,,p}) representation, we first perform a mapping of the
we obtain for the depletion force in the SA the expression effective one-component interactiaf(r) between the big
Sy stars onto an effective hard-sphere system of diameter
FoedRio) = - Zﬂprzf r? cjz(r)glz(r)dr Clearly, the latter depends on the reservoir densjtgs well
0 r as on the system parametersand f,. For the purposes of

1 performing the mapping in a physically meaningful way, we
% f (VRS + 12 = Ryfw)odw.  (14) disti_nguish betwgaen two cases. o
-1 First, we consider the case in whi®h(r) is either free of
. . attractive parts or positive definite or, at most, it contains
o o o o o ey o o GAINe prt ot esceeding sl Fractoket i
nitude. In this case, it is physically meaningful to identify

O_rn_stein-Zernike equation i_n Fig_. 3. The results are V€with the Barker-Henderson hard sphere diameter offtiie
similar to the ones we obtain by inverting the OZ equat'onﬁffective interactionVq(r), d, defined ag460]
eff (Al

and both approximations yields reasonable agreement wit
the simulation data. Therefore, it is possible to choose the -

results of either approximation for calculating the phase dia- d= J {1 - ex— BVer(n)]xdr. (15
grams and we expect that only minor quantitative differences 0

will be seen by employing the one or the other theoreticaMost of the curves shown in Fig. 5 fall into this category. An
approach. important exception are the curves pertainingjo3=0.1 in
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FIG. 5. The effective potentidl4(r) between two big star polymers in the presence of a sea of small ones. The various combinations
of parameters regarding the density, functionality and size of the additives are shown in the legends. Notice the development of a strong
attractive part in the interaction for the cage0.1.

Fig. 5a) and topho3=0.05 in Fig. Bb). For these combina- »

tions, and also for all others at even higher reservoir densi- do:f {1 -exg- BVo(r)Jidr. (16)

ties, a deep negative minimum appears/ig(r) and appli- 0

cation of Eq.(15) to such cases would lead to unphysically  In attempting to choose and match between the two pos-
small and even negative effective hard sphere diameters. Faible hard sphere diametetsandd,, we are confronted with
such combinations, it is physically appealing to separate tha technical difficulty. The evolution of the potentisl«(r)
effective potentiaNg(r) into a purely repulsive paiy(r)  with p}, is continuous and the appearance of negative minima
and a perturbation pai,.(r), by truncating and shifting is in general accompanied by a soft repulsive barrier after the
upwards the full interaction at the deepest minimf]. In minimum. The effective hard sphere diameter, on the other
this second case, it is pertinent to define another effectiveéand, has to be a continuous functionmf so as to avoid
hard sphere diameted,, that is associated withy(r) only  unphysical jumps of the phase boundaries in the phase dia-
and is calculated again from the Barker-Henderson recipegram. In Fig. 6 we show a typical result for the dependence
namely of d and dy on p). For low values ofp, where Vgu(r) is
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and Grundkg65] for the fluid and of Kincaid and Weig2]

for the fcc solid. We only considered the fcc solid because
this crystal structure appears at the fluid-solid transition in
one component star-polymer solutions with an arm number
f,=263[46].

14

B. Results

In Fig. 7 we show the resulting phase diagrams for size
ratios q=0.1 andq=0.2 and functionalities of the smaller
speciesf,=16 andf,=32, as obtained by the procedure de-
T scribed in the preceding subsection. The kinksdel0.1 at
45 0w 008 oo 005 005 006 about p;03=0.8 and p,03=0.1 and p,03=0.6 and p,o>

P2% =0.05, respectively, are an artifact of the chait@) and are

FIG. 6. The two possible effective hard sphere diamedessd associated with the sudden appearance Owaﬁ(f) termin
d, pertaining to the effective interactiovi(r) between big stars, Ed-(19), once we cross over from the case d, to the case
against the reservoir densipg. The parameter combination here is d<dy (cf. also Fig. §. Since we are primarily interested in
f,=32 andq=0.1. As explained in the texd, is calculated using the the behavior for small denSitiQi and the influence of the
full effective interaction andi, only for the reference part. additives on crystallization, on the one hand, and on the pos-

sible existenceof a spinodal line, on the other, a more so-
purely repulsived is a meaningful measure of the effective phisticated apprpach to the problem is at this stage not nec-
hard-sphere diameter. On the other hand, at high values gesany. The I|qU|d-sqI|d coexistence region obtained by th's
p5, Where a deep attraction between the big stars effectivel pproach is rather wide, due to the mapping on the effectlv_e
sets in, it isdy that most realistically captures the physics of ard-sphere system. Accurate calculations _Of the phas_e d|_a-
the repulsions. The two curves cross at some point and, igram of star polymers reveal that the coexistence region is

order to guarantee both the continuity @fas a function of much_ more narrow4e, yet the shape ar_ld evolution of the
p, and its correct asymptotic behavior for small and |argefrge2|ng lines as a function of; are not mﬂgenced by the.
values ofpl), we choose width of t.he density gap between the _fIU|d and the_ soI_|d
phases. Finally, we note that we have shifted the freezing line
o =maxd,dy}. (17 to higher densities by an amouA’plafzo.O& in order to

It is then clear from the discussion above that for the pertur—Obtaln the same density values for the crystallization as in

! . L the accurately known one component cp4g.
bation partVpe(r), of the interaction, it holds For size ratiog=0.1, the effective potential.x(r) devel-
Vped1) =0 if d>d,. (18) ops a strong attraction. This leads to a broadening of the

cgexistence area between the solid and fluid phase and even-

The phase diagrams can now be calculated using standajg, i ; i :
. . . y to a demixing binodal. This binodal is found, however,
first-order perturbation theorfp7] and taking Eqs(17) and 4 pe metastable with respect to the crystallization. The sharp
(18) into account. We do not take higher orders into accountinks that show up in Figs.(@ and 7b) are artifacts of the
because we are mainly interested in the qualitative behaviqx,ay in which the effective hard sphere diametewas de-
of the freezing line for small densitigs. Denoting byFo the  1ormined and, in particular, of the fact that the attractive per-
Hiflmh_oltzhfreéa enhergy (;).f the referr]ence Tardls%hclerefsyste@mrbation partVye{r) of the effective potential is absent in
(€ ectl\'/:e fetlrrm sphere |amete?,t ?tOta He_rtq otsz_ree the treatment for small reservoir densities below the kink and
energyF of the one-component system consisting\afbig present above it. In reality, we expect the phase coexistence

star polymers is approximated by lines to “turn around” smoothly, i.e., without the aforemen-
E F, 1 tioned artificial kink. However, the topology of the phase
lﬁ\l_l = BN_;) + Eﬁplf 9o(r)Vped N)r. (19 diagram and in particular the positive slope of the freezing
lines and the subsequent broadening of the coexistence re-
In Eq. (19) above,gy(r) denotes the radial distribution func- gion into a “gas-crystal” phase separation is not expected to
tion of the reference hard-sphere system in the fluid phaske affected by these approximations. For larger values af
and its angle-averaged counterpart in the solid phase, as dgtrong attraction does not emerge, so there is no fluid-fluid
fined in Ref.[62]. demixing. From Fig. 7 it can be seen that less stars fth
We note here that more accurate methods for the treat32 than withf,=16 are needed to achieve similar effect.
ment of potentials with a soft core have also been proposeihis is in agreement with the properties of star-polymer—
[61], but are not used here since we are only interested in theolloid mixtures which were investigated jB9]. The meta-
basic topology of the phase diagrams. For the free energy aftable binodal is closer to the stable region of the phase dia-
the reference hard sphere system we used the equations griam for the smaller functionality of the depletant. The same
state of Carnahan-Starling3] and Hall [64] for the fluid trends were also observed in star-polymer—colloid mixtures
and solid phases, respectively. For the calculation of paif39], where stable binodals were only found for small deplet-
distribution functions we use the expressions of Hendersoant functionalities such a$,=2 and f,=6. For the star-

11
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FIG. 7. Phase diagrams for star polymer mixtures for different parameter combinations. The big star functionality if fix@6&tThe
circles denote the phase boundaries as calculated by the hard-sphere mapping including the perturbgipfrpand the lines are a guide
to the eye. It can be seen that we only find a fluid-fluid demixinggfe0.1. This binodal line is metastable with respect to the formation of
the fcc solid. The kink in the phase boundariesder0.1 is an artifact and is caused by the method used to split the effective pair potential
into reference and perturbation part. The symbBdaitands for the fluid and the symb8ifor the solid regions.

polymer mixtures we consider here, the existence of a bindiagram of the mixture will have a topology running parallel
odal is less likely than in star-polymer—colloid mixtures, to that of the equilibrium one that we traced in this study. We
because for star polymers the depletion force has to ovepredict, therefore, that addition of small stars will bring
come the Yukawa-type repulsion between them before aabout a melting of the colloidal glager gel) formed by the

effective attraction sets in. large ones. This has been shown to be the case for mixtures
A striking effect is the melting of the crystal of the big

stars upon addition of the small component, as can be seen I

from the positive slope of the freezing and melting linesin | [ 0 6.0 i
Fig. 7. No effective attraction between the star polymers is [ oo plola ol S
needed for this effect. As can be seen from Fig. 6, the effec- ' S T
tive hard sphere diameter of the system decreases with o p'°‘3=0'2 |
increasing depletant density. Therefore, the effective packing 001~ [o—% p,0, =03 1

fraction n,s=(7/6)p,0° for the big stars gets smaller with
increasingp’,. Since this quantity determines the location of 5
the freezing transition, the latter shifts to higher valuepof <
The melting is therefore caused by the apparent shrinkage of
the stars due to the depletion effects. The counterintuitive 0.005
behavior of melting of a crystal although the overall polymer
concentration is increased has its physical roots instbfe
depletion mechanism and the associated reduction of the
range of the repulsive potential between the big stars.
In real experimental systems of star polymers, usually the S 0.005 001
formation of a glass is observed instead of crystallization. '3
These glass transition lines are usually parallel to the freez-
ing lines of the phase diagram, a property explicitly con- FIG. 8. Mapping between the system and reservoir dengities
firmed for the glass line of one-component star polymer soand p), of the small stars foff,=32 andq=0.1, and for various
lutions [50]. Therefore, we expect that the kinetic phasedifferent values of the big star density.
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FIG. 9. Comparison of the fluid structure in the two- and effective one-component case. The densities are denoted in the diagrams. The
structure of the mixture was calculated using the two-component RY closure, in the one component the usual RY closure was used. All plots

are forg=0.1 andf,=32. In panels(a), (e), and (f) the solid and dashed lines fall on top of each other, so that the latter cannot be
distinguished from the former.

of star polymers with linear homopolymer chaif#]. The chemical potential in the reservoir of densifycan

easily be calculated if the fluid structure is known. The
Helmholtz free energy density of the small stars in the res-
ervoir, F/V=f(p5), can be split into an ideal and an excess
part:

V. COMPARISON BETWEEN ONE- AND TWO-
COMPONENT DESCRIPTIONS

A. Chemical potentials

By calculating the partial chemical potentials of the two-
component system, we now map the reservoir representation
(p1,p5) on the real physical systelip;,p,), SO as to make
contact with experimental work, in which, has no direct
relevance. The densitigg andp, are linked by the condition
that the chemical potential of the reservpi has to be the
same as the partial chemical potential in the systemn

f(ph) = fia(ph) + fex(ph), (20

wherefi4(2)=p In(z7%)-z and 7 is an arbitrary length scale.
The second derivative of the excess part is connected to the
structure via the relatiof66]
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1 1 different approaches. For the one-component case, the RY
TSk=00") o (21) closure can be used because for the densities we consider
p2Sk=0:p7)  p; A : ; ;

here the effective interactions remain purely repulsive. The
where S(k) is the structure factor of the small stars in the cases we consider here are for small densjiigbut a wide
reservoir(one-component systemirhe free energy can then range of values op;. The two component description in-
be calculated by two integrations, with the integration con-cludes many-body forces between the big stars which are
stants determined by the conditiofj3(0)=0 andf.(0)=0. caused by the smaller component. These effects are ne-

fgx(PrZ) =

The chemical potential of the reservoir is given by glected in the effective one-component descriptj®h In
C Fig. 9, one can see excellent agreement of the results ob-
po =1 (pa). (22) tained by using these two different descriptions of the physi-

cal system. This additionally corroborates the validity of our
gpproximation of the effective interaction. It can also be con-
cluded from the plots that the three-body forces are indeed
much weaker than the pair interactions and can be safely

Seor(K) = x33S11(K) + X3:5,5(K) — (%)%%K, (23 neglected68,69.

where x;=p;/(p1+p,). Thermodynamic properties can then
be calculated by using the equatif 67|

g(%,P,T) }'1

ax5

In order two calculate the partial chemical potenjialin
the two-component system representation, we employ the s
called concentration structure facti@7]

VI. SUMMARY AND CONCLUSIONS

(24) We have analyzed the structural and phase behavior of
highly asymmetric mixtures of star polymers, with the asym-
whereg(x,,P,T)=G(x,,N,P,T)/N is the Gibbs free energy metry characterizing both their sizes and functionalities. The
per particle of the two-component mixture aRdits total ~ most striking phenomenon predicted by our investigations is
pressure. Equatiof24) can then be integrated as described inthe counterintuitiveneltingof the colloidal crystal of the big
Ref. [39] to yield the sought-for Gibbs free energy per par-stars upon addition of small ones. Though this finding ap-
ticle g(x,,P,T). Once the Gibbs free energy is known, the pears paradoxical at first sight, since addition of smaller stars
partial chemical potentials can be calculated using the equancreases the overall polymer concentration of the solution,
tions its physical explanation can be traced to the effectsait
depletion.Whereas the depletants of hard spheres simply su-
9'(X2) = p2 = 1 (25 perimpose an effective attraction on a hard potential, when
the big particles are themselves repulsive the depletion at-
traction is superimposed on(soft) repulsion. In this way, a
g(X) —%9" (X2) = s. (26) repulsive potential of reduced strength and/or range results
and the effective, reduced repulsion is not any more suffi-
; . cient to maintain the stability of the crystal, which therefore
for the mixture and using Eq&22), (25), and(26), the map- melts. When the depletant concentration becomes suffi-

. 4 : ap-
Ping (p1,pz) — (p1,p7) can be carried out. Representative re ciently high, the attractive depletion force dominates over the

sults are shown in Fig. 8. Clearly, the mapping depends pargs ¢ repulsion, leading to gossibly metastabjedemixing
metrically on the big star density; in the mixture. Forp; X

-0 — 1n all btai b transition between the two species.
=Y one Irlegove@z_—pz. na CaTeS’ wel 0 ta'frl’_2h< [:js'ff e In real experimental systems of star polymers with high
cause all Interactions are purely repulsive. The difterence, visnajity, crystallization is hindered by the vitrification

between the reservoir and system densities grows with ingye|ation transition and the large stars become structurally
creasingp. arrested in a glassy state above the overlap concentration.
The next step would be then to investigate the role and in-

B. Structure fluence of smaller star additives on the glass transition of

We now consider the spatial correlations between the bidarger stars, a problem of significant importance for the con-
stars in the fluid phase. We compare the correlation functionffol of the rheological behavior of soft matter through addi-
calculated in the two-component description with those aristives. Work along these lines is currently under way and the
ing from the one-component description using the effectivePresentation of the results of this investigation will be the
interactions in the presence of the smaller species. The congubject of a future publication.
parison has to be carried out for parameter combinations
such that the reservoir and system partial chemical potentials
of the smaller spe_cigs are equal to one anpthgr. As th_e one- ACKNOWLEDGMENTS
component description reduces the effective interaction to
pair potentials, the comparison of the structural properties We thank Dimitris Vlassopoulos, Joachim Dzubiella,
allows to estimate the magnitude of many body effects on thiMartin Konieczny, Emanuela Zaccarelli, Francesco Scior-
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lim Sgor(k) = {
k—0

and

Reverting from the pair of variables,,P) back to(p;,p»)
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